Integration of HEC-RAS and HEC-HMS with GIS in Flood Modeling and Flood Hazard Mapping

SCORE project partners from Samsun University have published a paper in the Sustainability journal. It is available in open access

Abstract

Floods are among the most devastating disasters in terms of socio-economics and casualties. However, these natural disasters can be managed and their effects can be minimized by flood modeling performed before the occurrence of a flood. In this study, flood modeling was developed for the Göksu River Basin, Mersin, Türkiye. Flood hazard and risk maps were prepared by using GIS, HEC-RAS, and HEC-HMS. In hydraulic modeling, Manning’s n values were obtained from 2018 CORINE data, return period flow rates (Q25, Q50, Q100, Q500) were obtained from HEC-HMS, and the application was carried out on a 5 m resolution digital surface model. In the study area, the water depths could reach up to 10 m, and water speeds were approximately 0.7 m/s. Considering these values and the fact that the study area is an urban area, hazard maps were obtained according to the UK Department for Environment, Food and Rural Affairs (DEFRA) method. The results indicated that possible flood flow rates from Q25 to Q500, from 1191.7 m3/s to 1888.3 m3/s, were detected in the study area with HEC-HMS. Flooding also occurred under conditions of the Q25 flow rate (from 4288 km2 to 5767 km2), and the impacted areas were classified as extremely risky by the DEFRA method.

References

Title: Integration of HEC-RAS and HEC-HMS with GIS in Flood Modeling and Flood Hazard Mapping

Authors: İsmail Bilal Peker, Sezar Gülbaz, Vahdettin Demir, Osman Orhan, and Neslihan Beden

Cite as: Peker, İ.B.; Gülbaz, S.; Demir, V.; Orhan, O.; Beden, N. Integration of HEC-RAS and HEC-HMS with GIS in Flood Modeling and Flood Hazard Mapping. Sustainability 2024, 16, 1226. https://doi.org/10.3390/su16031226

 

Find all SCORE’s publications on this page.