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BACKGROUND: ABOUT THE SCORE PROJECT 

 

The intensification of extreme weather events, coastal erosion and sea-level rise are major challenges to be urgently 

addressed by European coastal cities. The science behind these disruptive phenomena is complex, and advancing 

climate resilience requires progress in data acquisition, forecasting, and understanding of the potential risks and 

impacts for real-scenario interventions. The Ecosystem-Based Approach (EBA) supported by smart technologies has 

potential to increase climate resilience of European coastal cities; however, it is not yet adequately understood and 

coordinated at European level.  

SCORE is a four-year EU-funded project aiming to increase climate resilience in European coastal cities. The project 

outlines a co-creation strategy, developed via a network of 10 coastal city ‘living labs’ (CCLLs), to rapidly, equitably 

and sustainably enhance coastal city climate resilience through EBAs and sophisticated digital technologies.  

The 10 CCLLs involved in the project are: Sligo and Dublin, Ireland; Barcelona/Vilanova i la Geltrú, Benidorm and 

Basque Country, Spain; Oeiras, Portugal; Massa, Italy; Piran, Slovenia; Gdansk, Poland; Samsun, Turkey. 

SCORE will establish an integrated coastal zone management framework for strengthening EBA and smart coastal 

city policies, creating European leadership in coastal city climate change adaptation in line with The Paris Agreement. 

It will provide innovative platforms to empower stakeholders’ deployment of EBAs to increase climate resilience, 

business opportunities and financial sustainability of coastal cities. 

The SCORE interdisciplinary team consists of 28 world-leading organisations from academia, local authorities, RPOs, 

and SMEs encompassing a wide range of skills including environmental science and policy, climate modelling, citizen 

and social science, data management, coastal management and engineering, security and technological aspects of 

smart sensing research. 
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EXECUTIVE SUMMARY 

This document is a deliverable of the SCORE project, funded under the European Union’s Horizon 2020 research and 

innovation programme under grant agreement No 101003534. 

The aim of this document is to describe the processing tools and data of D3.5 

(https://doi.org/10.5281/zenodo.8034107). This document includes a brief theoretical explanation of the statistical 

analysis tools, a description of the tools’ usage, and the description of the produced datasets. 

 

LINKS WITH OTHER PROJECT ACTIVITIES  

The data produced by the tools in this task will enable other downstream models, and in particular the hydraulic and 

land-sea interaction models used for urban-scale flooding (Task 3.4) and also the long-term coastal evolution models 

(Task 3.5), whose development will build also on the main hazardous conditions at different occurrence probabilities 

identified by the clustering analysis. This is crucial for risk estimation in WP6 and for related Nature Based Solutions 

(NBS) adaptation strategies in WP7. Outputs of this Task 3.3 will finally be tested through a general analysis procedure 

in Task 3.6. Time series and outputs produced in this task are among the main sources of data production stored in 

the SCORE ICT Platform - SIP - (WP5) for the entire project and a fundamental component to drive models in Digital 

Twin (DT) and EWSS (Early Warning Support System) in WP8.

https://doi.org/10.5281/zenodo.7962768
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INTRODUCTION 
The purpose of D3.6 is to provide a description of the set of tools and procedures (included in D3.5) exploited to 

assess from a statistical point of view the climate data retrieved by the previous Tasks 3.1 and 3.2. Building on D3.5, 

the aim of this document is to provide a statistically based and standardized procedure to analyse historical time 

series and projections derived from the previous tasks, along with step-by-step examples to apply these tools to their 

own case studies and data by means of a range of R functions.  

These tools can be used to estimate trends in parameters of interest in coastal urban areas (sea level, waves, wind, 

rainfall, sea temperature, etc.), and related extreme values and to identify suitable distributions and return periods. 

Moreover, statistical tests, including goodness-of-fit tests are provided, along with more advanced multivariate 

analysis. Specifically, the main addressed points here are:  

i. past, present and future trend analysis based on linear models,  

ii. extreme value modelling from relevant extreme value theory,  

iii. clustering techniques for the multivariate data analysis aimed at grouping homogenous conditions for 

coastal hazard occurrence in the CCLLs, 

iv. analysis of the weather patterns over a defined region (in this case, the CCLLs areas) associated to the main 

coastal hazards in the CCLLs.  

This activity is propaedeutic to the development of models and scenarios of hydraulic risks at different time scales, 

functional to a range of different interventions to address climate change adaptation and mitigation and emergency 

management in the CCLLs. Moreover, the statistical-based approach provided in this task is transferable to other 

geographic contexts to enable coastal risk scenarios identification.  

Each section starts with a brief theoretical introduction on the statistical analysis approach used and followed by a 

description of the R tools exploited.  Each section is provided with examples of application, mainly for significant 

wave heights (𝐻𝐻𝑠𝑠(𝑚𝑚)) and river discharge (𝑄𝑄(
𝑚𝑚3𝑠𝑠 )).  

 

 

 

 

 

 

 

 

 

 



 
SCORE _D3.6_v1.0                                              11/49 

 

1. TIME SERIES TREND ANALYSIS 
Time series analysis is often used to estimate the trends in parameters of interest (sea level, waves, wind, rainfall, 

sea temperature, etc.) as exemplified in the present chapter.  

Understanding the parameters of interest is very important to analyse the underlying causes of their pattern and the 

trend that is leading to certain consequences. With increasing climate change consequences, and available historical 

data, analysing the affected parameters such as sea levels, waves, wind, rainfall, etc. is crucial.  Time series analysis 

is a simple and specific way of analysing these parameters by collecting the sequence of data over a period of time 

(Stasinopoulos, 2007). The collected data readings are studied through time-series analysis.  

A simple additive model in the time-series can be expressed as follows (Stasinopoulos, 2007): 𝑌𝑌(𝑡𝑡) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑆𝑆𝑇𝑇𝑆𝑆𝐻𝐻𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆 + 𝑅𝑅𝑇𝑇𝐻𝐻𝑆𝑆𝑇𝑇𝑅𝑅𝑆𝑆𝑆𝑆. 
Here Y is the parameter component that has been observed at a time-period (t). 

For the current study, hourly significant wave height 𝐻𝐻𝑠𝑠(𝑚𝑚) has been observed for Marina di Massa, Italy, from the 

years 1979 to 2018, according to the Table 1.   

Table 1 Total number of Hs(m) values from 1979 to 2018 for Marina di Massa, Italy 

 

No.  Year 
No of 

values 
 No.  Year 

No of 

values 
 No.  Year 

No of 

values 

1 1979 8736  15 1993 8760  29 2007 8760 

2 1980 8784  16 1994 8760  30 2008 8784 

3 1981 8760  17 1995 8760  31 2009 8760 

4 1982 8760  18 1996 8784  32 2010 8760 

5 1983 8760  19 1997 8760  33 2011 8760 

6 1984 8784  20 1998 8760  34 2012 8784 

7 1985 8760  21 1999 8760  35 2013 8760 

8 1986 8760  22 2000 8784  36 2014 8760 

9 1987 8760  23 2001 8760  37 2015 8760 

10 1988 8784  24 2002 8760  38 2016 8784 

11 1989 8760  25 2003 8760  39 2017 8760 

12 1990 8760  26 2004 8784  40 2018 8760 

14 1992 8784  28 2006 8760     

 

The figure below, Figure 1, shows the hourly time series for 𝐻𝐻𝑠𝑠(𝑚𝑚)  at Marina di Massa. We can observe that there is 

a seasonality that needs to be studied to understand the 𝐻𝐻𝑠𝑠(𝑚𝑚). This step suggests that further study of the 

parameter is required. 
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Figure 1: Time-series visualisation of the parameter Hs(m) 

Figure 2 shows the mean variations for each month. This is achieved by averaging the daily data to monthly data, 

grouping the same month data for every year (for example, grouping all the January averages for each year to see 

the time-series variation). 

 

Figure 2: Monthly average patterns of the historical data; the numbers 1-12 correspond to the months of 

January to December 
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Figure 3 shows the maximum and mean values of each month for the historical time-period data, and there is an 

increasingtrend observed from the pattern as well (blue line). 

  

Figure 3: Monthly (a) maximum and (b) mean values of the time-series data 

The figure below, Figure 4 shows the increasing trend of the 𝐻𝐻𝑠𝑠(𝑚𝑚) (blue line) as well for the RCP 4.5 and RCP 8.5 

scenarios over the 2006-2100 time period. 

 

  

Figure 4: Monthly maximum values of the time-series data for (a) RCP4.5 and (b) RCP8.5 

The significant trends, for all the data (𝐻𝐻𝑠𝑠(𝑚𝑚) for historical, RCP4.5, and RCP 8.5 scenarios) were identified using the 

Mann-Kendall test (Kendall, 1957; Mann, 1945). The test is to detect the presence of a monotonic tendency in the 

time series data. For this assessment, it makes no assumptions about the underlying distribution of the data, or its 

rank-based measures to influence any extreme values.  

The results from this test, for the hourly 𝐻𝐻𝑠𝑠(𝑚𝑚), shows that the test statistic is 0.029 and the corresponding two-

sided 𝑃𝑃 − 𝑣𝑣𝑆𝑆𝑆𝑆𝑅𝑅𝑇𝑇 is less than 2.22e-16. Because this 𝑃𝑃 − 𝑣𝑣𝑆𝑆𝑆𝑆𝑅𝑅𝑇𝑇 is less than 0.05, we reject the null hypothesis of the 

test and conclude that a trend is present in the data, as we already saw in the before figures. 

 

 

 

(a) 

(a) (b) 

(b) 
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2.  EXTREME VALUE ANALYSIS 

2.1. Introduction and methods 
The traditional way of analyzing extreme values is based on extreme values distributions. Originally introduced by 

Fisher & Tippett, 1928, these distributions account for maxima distributions in samples of identically distributed 

random and independent variables. Extreme value analysis (EVA) or Extreme Value Theory (EVT) aim to develop 

mathematical models and methods able to predict the occurrence of rare phenomena i.e., to estimate the likelihood 

of the occurrence of extreme values based on a few basic assumptions and observed/measured data (Benstock & 

Cegla, 2017). Although the extreme values are not frequent, the impact of these values on humans is huge. Studying 

such extreme values provides an overview of the parameter, for instance the rareness of such extreme data.  

Typical approaches are applied to annual maxima or occasionally over a different time period (e.g., monthly) i.e., the 

Block Maxima (BM). The classical reference on this method is  (Gumbel, 1958) though there are a range of other 

methods to fit the distributions. Other alternative approaches have been introduced more recently. One is to look at 

exceedances over a defined threshold rather than maxima over a fixed period i.e., the Peak Over Threshold (POT) 

method (Pickands, 1975). There is a third approach as well, which uses r-largest order statistics that considers values 

based on the comparison of BM and POT.  

The classical mathematical formulation is based on asymptotic results analogous to the Central Limit Theorem. Let 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … ,𝑋𝑋𝑛𝑛  be a set of random variables. Each 𝑋𝑋𝑖𝑖  is sampled from some unknown underlying distribution 

function F. The aim is to study the behaviour of the maximum value (the extreme value), which can be expresses as 𝑀𝑀𝑛𝑛 = 𝑀𝑀𝑆𝑆𝑀𝑀 {𝑋𝑋1,𝑋𝑋2,𝑋𝑋3 … … .𝑋𝑋𝑛𝑛}. 

However, the distribution should divide the observation period into non-overlapping periods of equal size and only 

considers the maximum observations in each period (Gumbel 1958). 

The general assumption for the simple maximum is that for the integer  ℎ ≥ 0 and 𝑇𝑇 ≥ 1, the distribution of the 

random vector (𝑋𝑋ℎ+1,𝑋𝑋ℎ+2, … ,𝑋𝑋ℎ+𝑛𝑛)  does not depend on ‘ℎ’. And for the maximum 𝑀𝑀𝑛𝑛, we seek the limiting 

distribution of (𝑀𝑀𝑛𝑛 − 𝑏𝑏𝑛𝑛)/𝑆𝑆𝑛𝑛 for some choice of normalising constants 𝑆𝑆𝑛𝑛 > 0 and 𝑏𝑏𝑛𝑛 (further description is 

provided in (Ferro, 2005). 

For estimating the probability (𝑃𝑃) of an extreme value (or a rare event) above the threshold 𝑅𝑅, the general empirical 

frequency equation is, where N is the sample size:  𝑃𝑃� =
1𝑁𝑁∑ 1𝑥𝑥𝑖𝑖>𝑢𝑢𝑁𝑁𝑖𝑖=1 . 

where 1𝑥𝑥𝑖𝑖>𝑢𝑢 denotes the indicator of a rare or extreme event, that exceeds the threshold value. 
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2.2. Block Maxima  
The Block Maxima technique in extreme value theory (EVT) focuses only on the maximum observation during each 

non-overlapping, equal-sized interval of the observation period. The resulting new observations roughly follow an 

extreme value distribution under conditions of extreme value (Ferreira & De Haan, 2015). Thus, one can say that the 

Block Maxima (BM) or Extremal Types Theorem (ETT) addresses a specific question, which is ‘for a set of 𝑗𝑗 
independent identically distributed positive values, {𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑗𝑗}, what are the possible limiting distributions of 𝑀𝑀𝑗𝑗’ 
(Anderson et al., 1984), where 𝑀𝑀𝑗𝑗 =  𝑆𝑆𝑗𝑗� 𝑀𝑀𝑆𝑆𝑀𝑀�𝑋𝑋1,𝑋𝑋2,𝑋𝑋3 … … .𝑋𝑋𝑗𝑗� − 𝑏𝑏𝑗𝑗� as 𝑗𝑗 → ∞. 𝐹𝐹𝑗𝑗(

𝑥𝑥−𝑏𝑏𝑗𝑗𝑎𝑎𝑗𝑗 ) 𝑗𝑗→∞�⎯�  𝐺𝐺(𝑀𝑀), 

where 𝑆𝑆𝑗𝑗 and 𝑏𝑏𝑗𝑗  are the normalising constant for a set of ‘j’ independent identically distributed positive values, 𝑀𝑀𝑗𝑗 
is the set of maximum values for each block, 𝐺𝐺(𝑀𝑀) is the non-degenerate distribution function, and 𝐹𝐹𝑗𝑗is the 

distribution function𝑗𝑗’ values. 

There are three cumulative distribution functions known as Generalized Extreme Value (GEV) cumulative distribution 

functions for the Extreme Value Analysis (EVA):  

1) Gumbel distribution: 

𝐹𝐹(𝑀𝑀) = 𝑇𝑇−�𝑥𝑥−𝜇𝜇𝜎𝜎 �−𝜉𝜉𝑀𝑀  ∈  𝑅𝑅,  𝑀𝑀  >  𝜇𝜇,  𝜉𝜉 > 0,  𝜎𝜎 > 0 

2) Fréchet distribution:  

𝐹𝐹(𝑀𝑀) = 𝑇𝑇−�𝑥𝑥−𝜇𝜇𝜎𝜎 �−𝜉𝜉𝑀𝑀  ∈  𝑅𝑅,  𝑀𝑀  >  𝜇𝜇,  𝜉𝜉 > 0 

3) Weibull distribution:  

𝐹𝐹(𝑀𝑀) = 1 − 𝑇𝑇−�𝑥𝑥𝜎𝜎�𝜉𝜉𝑀𝑀  ≥ 0,  𝜎𝜎 > 0,  𝜉𝜉 > 0 𝐹𝐹(𝑀𝑀) = 0,  𝑀𝑀  < 0 

In these equations, 𝜇𝜇 is the location parameter, 𝜉𝜉 is the shape parameter, and 𝜎𝜎 is the scale parameter. The shape 

parameter ξ governs the distribution type, also called Type I, Type II and Type III distribution functions: Type I with ξ 
= 0 (Gumbel distribution); Type II with ξ > 0 (Fréchet distribution); Type III with ξ < 0 (Weibull distributions). The 

general analysis shows that Weibull distribution fits can be found for wind, waves, and sea level parameters. 

The BM guarantees that if a limit exists for maxima, it must have one of these specified forms of distribution.  

The Generalized Extreme Value (GEV) distribution is the combined approach for the above three distribution 

functions, and it can be written as follows (cumulative distribution function): 

𝐹𝐹(𝑀𝑀) = 𝑇𝑇−�1+𝜉𝜉𝑥𝑥−𝜇𝜇𝜎𝜎 �−1𝜉𝜉
, 

defined for values of x for which 𝜉𝜉 ∙ 𝑀𝑀 > 𝜉𝜉 ∙ 𝜇𝜇 − 𝜎𝜎 . 

The Block Maxima method was tested for the 𝐻𝐻𝑠𝑠(𝑚𝑚) from Marina di Massa, Italy. For this analysis we used annual 

maximum values from the original hourly 𝐻𝐻𝑠𝑠(𝑚𝑚).  In Figure 5, we can see the time series plot which shows that the 𝐻𝐻𝑠𝑠(𝑚𝑚) ranges from 2.8 m to 4 m.  
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The BM process is run in R-package (Gilleland & Katz, 2016), with a block size 1 year (12 months) for the model fit, 

and maximum likelihood estimation (MLE) is used for both GEV and Gumbel distributions. The parameters of the 

generalised extreme value distribution were: μ= 3.209 as location, σ= 0.324 as scale and ξ= -0.316 as shape 

parameters, while standard errors for each are 0.056, 0.040, and 0.963 respectively. The shape parameter from the 

analysis has a negative value, therefore the fitted GEV distribution is a Weibull distribution.  

  
Figure 5 Annual maximum values of 𝐻𝐻𝑠𝑠(𝑚𝑚) for Massa, Italy 

The goodness of fit was assessed graphically by various diagnostic plots shown on Figure 6. The model fitted very 

well to a certain level around 3.2 m to 3.8 m and it seems above that data is slightly less extreme than what the 

Weibull distribution would suggest, however the overall fit seems fine.  

 

Figure 6: GEV model diagnostics plots 
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Figure 7 shows the likelihood and gradients in the neighbourhood of the optimum values reached for each parameter 

(with the other parameters held at their optimum values) (Gilleland & Katz, 2016).  GEV fits seem reasonable based 

on the assumptions made. 

 

Figure 7: Location, Scale and Shape parameter likelihood gradients for GEV distribution 

The Gumbel distribution has been used for the return periods and model diagnostics for the comparison with the 

GEV distribution. We have obtained μ= 3.156 as location, σ= 0.3086804 as scale and 𝜉𝜉 =0 as shape. However, the 

model fit for the Gumbel distribution shows that the 𝐻𝐻𝑠𝑠(𝑚𝑚)  values does not fit well with the model values (Figure 

8). Figure 9 is similar to Figure 7 from the GEV distribution which shows the scale and shape factors for the Gumbel 

distribution, where unlike GEV the scale factor, the scale factor exceeds 0.  The figures and values also suggest that 

the Gumbel distribution is not a good fit for the 𝐻𝐻𝑠𝑠(𝑚𝑚) EVT. Additionally, the best fitted GEV model can be justified, 

based on the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and likelihood ratio test. Lower 

values of AIC and BIC indicate the better model (Table 2) between the two distributions.  

Table 2: AIC, BIC and the negative likelihood ratio tests results 

 

 AIC BIC 

Negative 

likelihood 

ratio test 

GEV 27.548 32.614 10.773 

Gumbel 31.716 35.094 13.858 
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Figure 8 Gumbel distribution model fit 

 
Figure 9: Location and Scale parameter likelihood gradients for Gumbel distribution (shape=0) 
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Results expressed in return levels for both GEV and Gumbel distribution functions are summarised in Table 2 . These 

are the maximums which occur once on average during the given return period. The likelihood test also reveals, 𝑝𝑝 −𝑣𝑣𝑆𝑆𝑆𝑆𝑅𝑅𝑇𝑇 of 0.013 which is less than 0.05. Therefore, as expected, the Gumbel distribution is not suitable.  

In Table 3, the return period estimates along with their Confidence Intervals calculated for both distributions are 

presented.  

Table 3: Return levels for the 𝐻𝐻𝑠𝑠(𝑚𝑚) 

 95% lower CI Estimate 95% upper CI 

GEV distribution 

25-year return period 3.727 3.861 3.996 

50-year return period 3.779 3.936 4.092 

100-year return period 3.811 3.995 4.178 

200-year return period 3.830 4.042 4.255 

Gumbel distribution 

25-year return period 3.864 4.143  4.421 

50-year return period 4.034  4.360 4.686 

100-year return period 4.202 4.576 4.949 

200-year return period 4.369 4.790 5.212 

 

2.3. Peak over Threshold 
To obtain the maximum of each block, the BM approach separates the data into many blocks. To have sufficient 

blocks, a very large data set is required. To overcome this, a modern approach, known as the Peak over Threshold 

(POT) approach is elaborated in the sections below. 

2.3.1. Introduction 

The POT approach works by specifying a certain high threshold and considering all observations above the threshold 

point in the analysis. Therefore, it is always critical to find an appropriate threshold for POT method. The POT method 

was first developed by (Pickands, 1975) with both theoretical framework and statistical tools (Ferreira & De Haan, 

2015). Rather than block size, POT uses threshold value. Therefore, the POT method uses all the relevant high 

observations and neither misses any higher observations, nor retains any lower observations, thus making better use 

of available data. The Generalized Pareto Distribution (GPD) model is usually used for the POT.  

For a sample of observations 𝑋𝑋𝑡𝑡 for 𝑡𝑡 = 1,2, … ,𝑇𝑇, a simple way to extract the extremes observations exceeding over 

a predetermined high threshold (𝑅𝑅) is considered. This exceedance can be recorded when the 𝑋𝑋𝑡𝑡 > 𝑅𝑅 for any 𝑡𝑡 =

1,2, … , 𝑇𝑇. The cumulative distribution function for such sample observations is 𝐹𝐹(𝑀𝑀) = Pr(𝑋𝑋𝑡𝑡 ≤ 𝑀𝑀), the excess over 𝑅𝑅 is defined as 𝑆𝑆 = 𝑋𝑋𝑡𝑡 − 𝑅𝑅 and this approach is called POT. 

For a parameter, if the independent identically distributed random variables  of a function, and the data has shown 

exceedance values above a specific threshold (𝑅𝑅), the GPD function formula, in terms of cumulative distribution 

function (CDF) is as follows (Saeed Far & Abd. Wahab, 2016):   
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𝐹𝐹(𝑀𝑀) = 1− (1 +
𝜉𝜉𝑆𝑆𝜎𝜎𝑢𝑢)

1−ξ  ,                𝑓𝑓𝑆𝑆𝑇𝑇 σ >  0  and  ξ ≠  0 

𝐹𝐹(𝑀𝑀) = 1 − exp �− 𝑦𝑦𝜎𝜎𝑢𝑢� ,                𝑓𝑓𝑆𝑆𝑇𝑇 σ >  0  and  ξ = 0   , 

where the distribution function of the excesses 𝑆𝑆 is over the threshold 𝑅𝑅. Therefore, 𝑆𝑆 ≥ 0 if  ξ ≥ 0 and 0 ≤ 𝑆𝑆 ≤−𝜎𝜎𝑢𝑢/ξ if ξ < 0. Here, σ  is the scale parameter, and ξ is the shape parameter.   

Further description of POT and related theorems are described in (Bommier, 2014). The step-by-step procedure for 

the POT approach is:  

1. Select the threshold 𝑅𝑅 

2. Extract the exceedances from the observations 

3. Fit the GDP distributions 

4. Estimate the return levels. 

2.3.2. Threshold selection – Graphical Method 

The threshold should ensure extraction of maximum information from the time series, without violating statistical 

assumptions underlying the Partial Duration Series (PDS) approach (Kiran & Srinivas, 2021). PDS approach considers 

the events that exceed an established threshold retrieved from a time-series. The objective of this threshold is to 

help reduce the number of observations and reduce the variance by avoiding too low values as thresholds that induce 

bias (Acero et al., 2018).  

There are two main ways to select a threshold value for a set of observations: 

1) Graphical analysis through plots, and 

2) Numerical approach via equations, which again can be sub-categorised as model fit, non-parametric models, 

computational approach etc.  

The easiest method to estimate the residuals is to fit the Generalised Pareto Distribution (GPD) for a range of 

thresholds (Coles, 2001; Smith, 2002). The reparameterization of generalised Pareto scale parameter is one 

technique to see the estimates by avoiding the scale change 𝜎𝜎∗ =  𝜎𝜎𝑢𝑢 − 𝜉𝜉𝑅𝑅. The parameter stability plot (Figure 10) 

shows plotting the parameter estimates 𝜉𝜉 (shape parameter) and the reparametrized scale (𝜎𝜎𝑢𝑢) from the GPD model 

against the range of thresholds (𝑅𝑅). The plots show that for threshold (u) above 1 (known as optimal threshold 

values), the shape and scale values are nearly constant.  For the present study, the statistical modelling of extreme 

events from R-packages “ismev” (Janet E. Heffernan, 2022) and “extRemes” (Gilleland & Katz, et al. 2016) are used 

for the graphical analysis of waves.  

The mean residual life (MRL) plot is another commonly used method for threshold selection (Coles, 2001). The MRL 

uses the mean of the GPD function for the threshold selection. The mean of the Generalised Pareto Distribution E(Y), 

for a random variable Y (a nonnegative random variable), with parameters 𝜎𝜎 (scale parameter), and  𝜉𝜉 (shape 

parameter) is described as  𝐸𝐸(𝑌𝑌) =  
𝜎𝜎1−𝜉𝜉   , 𝑓𝑓𝑆𝑆𝑇𝑇 𝜉𝜉 < 1.  

For any higher threshold values 𝜈𝜈 where 𝜈𝜈 > 𝑅𝑅, the expected value is 𝐸𝐸(𝑌𝑌 − 𝜐𝜐|𝑆𝑆 > 𝜐𝜐) = [𝜎𝜎𝑈𝑈 + 𝜉𝜉 ∗ (𝜐𝜐 − 𝑅𝑅)]/(1− 𝜉𝜉) 
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It is linear in higher thresholds 𝜈𝜈 with the intercept [𝜎𝜎𝑈𝑈 − 𝜉𝜉 ∗ 𝑅𝑅]/(1 − 𝜉𝜉) and gradient 𝜉𝜉/(1− 𝜉𝜉). The estimated 

mean residual life above a threshold 𝜐𝜐 is given by the sample mean excess mean (𝑀𝑀[𝑀𝑀 > 𝑣𝑣]) − 𝜐𝜐. The approximation 

process starts with a pre-chosen threshold value, then the GPD is fitted to the excesses using maximum likelihood 

estimation. The threshold should be chosen at the value where the shape and scale parameters remain constant. 

 

Figure 10: Parameter estimates for reparameterised scale and shape 

Figure 11a shows the MRL threshold plots, where the mean excess values are linear when the threshold 𝑅𝑅 is above 

1. The upper and lower tails gradually underperformed for thresholds greater than 2.8 and it also shows that here 

the difference between upper and lower CIs (Confidence Intervals) is larger. The thresholds for scale against the 

threshold in Figure 11b show the same range as well. 

In the last plot, Figure 11c we use Pickand’s plot to find the optimal threshold. Pickand estimators are generated by 

a probability measure that satisfies a certain integrity condition, i.e., for a set of variables, which are independent 

identically distributed, {𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … ,𝑋𝑋𝑛𝑛}, the Pickand’s estimator is based on the fact that the random variables are 

exponentially distributed. The expression for Pickand’s estimator is as follows: 𝜉𝜉𝑘𝑘,𝑛𝑛� =  
1log (2)

 log (
𝑋𝑋k−𝑋𝑋2k𝑋𝑋2𝑘𝑘 −𝑋𝑋4k), 

where 𝑘𝑘 =  1, 2, … �𝑛𝑛4�. The Pickand’s plot only estimates the threshold limits for shape. Like the above estimates, 

Pickand’s plot (Figure 11c) shows values between 1 and 1.5 like previous estimates (Figure 10). From all these plots 

we can conclude that using the Graphical Method, the threshold can be 𝑅𝑅 = 1.5.  
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Figure 11: a) MRL plot, b) Threshold stability plot and c) Pickland’s plot 

2.3.3. Threshold selection – Thompson Method 

The basic model-fit method to estimate the thresholds is ideally used in the statistical analysis and has been under 

modifications for better assessments. The Thompson method of threshold selection plots parameter estimates of 

GPDs fitted using a range of thresholds against the threshold and is the basis of our automated threshold selection 

procedure (Thompson et al., 2009). The method plots parameters estimate of GPDs fitted using a range of threshold 

against the threshold via automation approach. If the threshold range is assumed as 𝑅𝑅1,𝑅𝑅2, … , 𝑅𝑅𝑛𝑛 and 𝜎𝜎𝑢𝑢𝑗𝑗  and 𝜉𝜉𝑢𝑢𝑗𝑗  
be assumed as the maximum likelihood estimators of the scale and shape parameter based on data above the 

threshold 𝑅𝑅𝑗𝑗 = 1, … ,𝑇𝑇. The scale parameter estimate can be expressed as  𝜎𝜎𝑢𝑢𝑗𝑗−1 =  𝜎𝜎𝑢𝑢 +  𝜉𝜉 �𝑅𝑅𝑗𝑗−1 − 𝑅𝑅� 𝑆𝑆𝑇𝑇𝑇𝑇 𝜎𝜎𝑢𝑢𝑗𝑗 =  𝜎𝜎𝑢𝑢 +  𝜉𝜉 �𝑅𝑅𝑗𝑗 − 𝑅𝑅�,  
provided 𝑅𝑅 ≤ 𝑅𝑅𝑗𝑗−1 < 𝑅𝑅𝑗𝑗. Therefore, the difference between two consecutive thresholds can be expressed as 𝜎𝜎𝑢𝑢𝑗𝑗 −  𝜎𝜎𝑢𝑢𝑗𝑗−1 = 𝜉𝜉(𝑅𝑅𝑗𝑗 −  𝑅𝑅𝑗𝑗−1). 

From this we can also say that Thompson method estimates can recover a known threshold from a simulated data 

set to a good degree of accuracy (Thompson et al., 2009). 
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For implementing this method, we have used the “Tea” R package (Ossberger, 2022), following the steps described 

in (Thompson et al., 2009), which is described as follows. 

To identify a suitable threshold u, suitable values of equally spaced candidate thresholds  𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅𝑛𝑛, (Thompson 

et al., 2009), are identified. Thompson et al. (2009) suggested 𝑇𝑇 =  100 as that gives good results. We take the first 

threshold,  𝑅𝑅1 to be the median and the last one,  𝑅𝑅𝑛𝑛, to be the 98% quantile of the data, or the 100th value in the 

data set if fewer than 100 values are less than the 98% quantile. To determine which thresholds are suitable, we 

apply the Pearson's Chi-Square Test, a test of goodness of fit, to establish whether the observed differences between 

scale parameters follow a normal distribution with mean 0. If it does, the threshold u is taken to be suitable. This 

process is repeated until the Pearson's test indicates that the differences are consistent with a normal distribution. 

If it does not happen, the last threshold is returned with a warning (Thompson et al., 2009). The image below, Figure 

12, shows part of the results of this analysis, in which the first column is a test number, the second column is a 

threshold, and the third column is the number of values above the threshold from the previous column. Next is the 

p-value, followed by the ForwardStop and StrongStop criteria calculated based on (G’Sell et al., 2016) and finally, the 

estimated scale and shape values.  

 

Figure 12: Results of the threshold from the Thompson methodology  

Using Thompson et al., 2009, approach, we need to identify when the null hypothesis of normality is not rejected 

(𝑝𝑝 − 𝑣𝑣𝑆𝑆𝑆𝑆𝑅𝑅𝑇𝑇 >  0.05), so that we can choose the appropriate threshold. We can observe in Figure 13 that the p-value 

oscillates between values greater and less than 0.05. For consistency, we selected 0.292 as a threshold with a p-value 

higher than 0.05. For this threshold we have 175308 values above the threshold selected and p-value = 0.525. 

  

Figure 13: Results of the threshold and p-value from the Thompson methodology  
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2.3.4. Threshold selection – EVA package 

The next methodology for finding the suitable threshold comes from the EVA R package (Bader et al., 2018), function 

“gpdSeqTests”. This function is quite similar to (Thompson et al., 2009) methodology, but it has a more natural 

approach, by sequentially testing for a GPD above a certain threshold based on all data, rather than just differences 

in scale parameter differences. The purpose of this function is to test multiple thresholds for Goodness-of-Fit to the 

Generalized Pareto model using a variety of tests (Anderson Darling test, Cramer-von Mises test, Score test, etc.). 

For this purpose, we chose the Anderson Darling test. 

In the same manner as Thompson, we take the first threshold to be the median and the last threshold to be the 98% 

quantile of the data, or the 100th value of the data set if fewer than 100 values are less than observed in Figure 14.  

 

Figure 14: Results of the threshold from the “gpdSeqTests” function 

Figure 15 shows the threshold results in combination with the p-values results. It can be seen that p-values tend to 

be higher than 0.5 when the test number is higher than 40.  As the p-value oscillated between higher and lower than 

0.05, we chose the 10th consecutive p-value greater than 0.05 for consistency. In this case, the threshold has the 

value of 1.629. For this threshold, the p-value is 0.224, test number is 77 and we have 15664 values above the 

selected threshold.  

  

Figure 15: Results of the threshold and p-value from the Thompson methodology  

2.3.5. Threshold selection – Solari Method 

Solari et al. 2017 proposed another method for automatic threshold estimation using the Anderson-Darling EDF-

statistic and goodness of fit test. It helps to quantify both the uncertainty of the threshold and its impact on the 

return period values (Solari et al., 2017), which is a drawback in the case of graphical threshold selection methods. 

The first step for this approach is the usual GPD approach (with function 𝐹𝐹(𝑀𝑀)), however the GPD distributions are 

estimated using L-moments to estimate the three parameters (shape, scale, and location). Then Anderson-Darling 

statistic and Goodness of Fit (GOF) test with its 𝑃𝑃 − 𝑣𝑣𝑆𝑆𝑆𝑆𝑅𝑅𝑇𝑇 are used to understand the parameter distributions.  
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The L-moments can handle both big- data and small sample as it uses the batch processing of extreme value data. 

This L-moments approach was first developed by Hosking and Wallis (1987) that estimates the three parameters 

(shape 𝑘𝑘, scale 𝜎𝜎, and threshold 𝑅𝑅) of the GPD (described in section 2.3.1) from a sample size of ‘𝑇𝑇’ and can be 

expressed as (Solari et al., 2017) 𝑘𝑘 = (3𝑡𝑡3 − 1)/(1 + 𝑡𝑡3), 𝜎𝜎 =  𝑆𝑆2(𝑆𝑆 − 𝑘𝑘)(2− 𝑘𝑘), 𝑅𝑅 = 𝑆𝑆1 − 𝜎𝜎/(1 − 𝑘𝑘) , 

where, 𝑆𝑆1 = 𝑏𝑏0, 𝑆𝑆2 = 2𝑏𝑏1 − 𝑏𝑏0, 𝑆𝑆3 = 6𝑏𝑏2 − 6𝑏𝑏1 + 𝑏𝑏0, and 𝑡𝑡3 =  𝑆𝑆3/𝑆𝑆2, while  

𝑏𝑏𝑟𝑟 =  𝑇𝑇−1 � (𝑆𝑆 − 1)(𝑆𝑆 − 2) … (𝑆𝑆 − 𝑇𝑇)

(𝑇𝑇 − 1)(𝑇𝑇 − 2) … (𝑇𝑇 − 𝑇𝑇)
𝑀𝑀,

𝑛𝑛
𝑖𝑖=𝑟𝑟+1  

where, 𝑏𝑏𝑟𝑟  is the probability weighted momentum from which 𝑏𝑏0, 𝑏𝑏1, 𝑏𝑏2 are estimated for the L-moments, 𝑆𝑆1, 𝑆𝑆2, and 𝑆𝑆3 and 𝑡𝑡3 is the ratio of L-moments. 

For the GOF test and its 𝑃𝑃 − 𝑣𝑣𝑆𝑆𝑆𝑆𝑅𝑅𝑇𝑇, (Solari et al., 2017) used Anderson-Darling test (𝐴𝐴2), which is based on the 

Empirical Distribution Function (EDF) statistic proposed by (Stephens, 1974). The test, which uses the cumulative 

distribution function will determine if a data set comes from a specified distribution or not. For a sample size 𝑇𝑇, and 

 𝑧𝑧𝑖𝑖 a cumulative distribution function 𝐹𝐹(𝑀𝑀), and for the specified order of statistics Xi; 𝑆𝑆 = 1 …𝑇𝑇, (𝑀𝑀𝑖𝑖 ≤ . . .≤ 𝑀𝑀𝑛𝑛). 

The Anderson-Darling equation is as follows: 

𝐴𝐴2 =  
1𝑇𝑇��(2𝑆𝑆 − 1)�log(𝑧𝑧𝑖𝑖) + log�1− 𝑧𝑧(𝑛𝑛+1−𝑖𝑖)��� − 𝑇𝑇𝑛𝑛
𝑖𝑖=1  

For each set of the GP distribution, the parameters (shape k, scale and location u) are estimated by means of by L-

moments. For the current study, the time-series data has been de-clustered using the storm window approach to 

identify the independent peaks. Then the threshold values are selected from the peaks and repeated values are 

removed from them. The 𝐴𝐴2,  and 𝑃𝑃 − 𝑣𝑣𝑆𝑆𝑆𝑆𝑅𝑅𝑇𝑇𝐻𝐻 are calculated for each threshold by using AD statistic and L-moments. 

Finally, the 𝑝𝑝 − 𝑣𝑣𝑆𝑆𝑆𝑆𝑅𝑅𝑇𝑇 and 𝐴𝐴2 are used to select the threshold.  

For the AD distribution, modified AD statistic equation by Sinclair et al., 1990 is used (known as right-tail weighted 

Anderson Darling statistic) as shown in the following equation. This modified one gives more weight to the upper tail 

distribution data than that for the lower tail (Solari et al., 2017). 

𝐴𝐴𝑅𝑅2 =  
𝑇𝑇
2

  �[(2 − 2𝑆𝑆 − 1𝑇𝑇𝑛𝑛
𝑖𝑖=1 ) log(1 − 𝑧𝑧𝑖𝑖) + 2𝑧𝑧𝑖𝑖] 

where 𝑧𝑧𝑖𝑖 = 𝐹𝐹(𝑀𝑀𝑖𝑖), for the parameters of distribution F(x) from the estimate sample {𝑀𝑀(𝑖𝑖)}. Here, the distribution of 

the statistics A2 and AR
2 depends on the sample length, the parameter estimation method, and the value of the 

estimated parameters, in particular the shape parameter k (Solari et al., 2017). 

For the Solari method, we used two methods: one is with a fixed threshold and the other one is with the 

bootstrapping. The bootstrapping technique is used for estimating the thresholds (𝑅𝑅0 and 𝑅𝑅) and the confidence 

intervals of high return period quantiles. The methodology follows three steps (Solari et al., 2017):  

i) For a series N and peaks in the series 𝑁𝑁𝑝𝑝   the bootstrapped series 𝑁𝑁𝑏𝑏  can be obtained from the original 

peaks 𝑋𝑋𝑃𝑃 ∶ {𝑀𝑀𝑗𝑗 , 𝑆𝑆 = 1 … . ,𝑁𝑁𝑝𝑝, with 𝑗𝑗 = 1, …𝑁𝑁𝑏𝑏;  
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ii) Then, for each bootstrapped series, a threshold 𝑅𝑅𝑜𝑜,𝑗𝑗 , the GP parameters and high return periods are 

estimated using the Anderson-Darling modified approach with the threshold that minimizes one minus 

the p-value (𝑅𝑅0 = 𝑆𝑆𝑇𝑇𝑎𝑎 min𝑢𝑢𝑗𝑗 (1− 𝑝𝑝�𝑅𝑅𝑗𝑗�));  

iii) Finally, the confidence intervals for the threshold and high return periods are estimated.  

As part of this method, we used the R package available at GitHub "MultiHazard" (Jane, 2020), (the code is first used 

for the flood events in South Florida (Jane et al., 2020)) along with the same dataset, but instead of hourly, we used 

daily maximum values.  

The first step to perform this analysis was to detrend the dataset used. For this analysis, we used daily maximum 

values from the original dataset, as Solari et al., 2017 suggested.  

The wave data is detrended using the linear trend method, where a moving average of three-month period has been 

used to remove any seasonality from the time series. The detrended wave data can be observed in Figure 16. 

 

Figure 16: Detrended wave data 

The next step performed was to decluster the dataset, using a specified threshold. The threshold 𝑅𝑅 is specified as a 

quantile of the completed series, then repeated values are separated to ensure independent events. Figure 17 shows 

the completed, detrended record (grey circles) along with cluster maxima (red circles) identified using a 90% 

threshold (green line). In this plot, the threshold values range is 1.6 to 4 and while the good fit is 1.615.  From these 

results, the number of events per year are 14.1.  

The GPD fit is then used for the distribution to the observations above a threshold 𝑅𝑅, which is a quantile of the 

completed time-series from the Solaris AD statistics. Therefore, the GPD fit distribution uses the declustered series 

and detrended value to calculate the value on the original scale corresponding to 𝑅𝑅. 
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Figure 17: Declustered wave data 

 
Table 4 shows the values for the parameter estimate for the fitted cluster maxima model. The threshold value 

obtained from the analysis is 2.083. The log-likelihood value of GPD is -91.354, the excess rate 0.0212 and AIC 

186.708. 

Table 4: Parameter estimates for the cluster maxima 

Parameter Estimate Standard Error 

Scale (σ) 0.676 0.072 

Shape (ξ) -0.315 0.049 

The probability and quantile plots from the GPD diagnostics plots (Figure 18) show that the points are linearly 

distributed with good fit along the 0-1 straight line modelling the data. The return periods also show linearity with 

the data.  

According to the  (Solari et al., 2017) approach, we have done the first part of the analysis: declustering the time 

series using the storm window approach, ordering the peaks and removing any repeated values, and fit the GPD to 

all the peaks above each candidate threshold. The next step involves the calculation of the 𝐴𝐴𝑅𝑅2  statistic and its 

corresponding p-value for each threshold, and the one that minimizes (1 −  𝑝𝑝 𝑣𝑣𝑆𝑆𝑆𝑆𝑅𝑅𝑇𝑇) will be selected. Figure 19 

shows the results for the 𝐴𝐴𝑅𝑅2  and 𝑝𝑝 − 𝑣𝑣𝑆𝑆𝑆𝑆𝑅𝑅𝑇𝑇, along with a set of plots for the selection of the threshold with the 

graphical method (MRL plot, evolution of the parameters with the threshold). This set of plots also includes 50-, 100- 

and 500-year return periods. 

We found a threshold equal to 2.135 corresponding to 𝐴𝐴𝑅𝑅2 = 0.089 and 1−  𝑝𝑝_𝑣𝑣𝑆𝑆𝑆𝑆𝑅𝑅𝑇𝑇 = 0.162, which is quite close 

to the threshold that would be selected by the graphical approach in section 2.3.2 (i.e., 1.5). 
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Figure 18: GPD fit diagnostic plots 

 

 

Figure 19: Solaris estimated optimal threshold: a) Mean residual life plot; b) GPD shape parameter; c) Modelled GPD scale 

parameter; d) 50-year return period; e) 100-year return period; f) 500-year return period; g) AR
2 statistics  h) 1-P value with 

threshold and i) number of events per year with the threshold 

 

(a) (b) (c) 

(d) (e) (f) 

(g) 
(h) (i) 
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For the selected threshold we check the fit of the GPD at the selected threshold and the results are available in Figure 

20. In this figure, the black continuous lines represent results obtained using a fixed threshold, while grey bars 

represent results obtained by estimating the threshold at every bootstrap simulation (Solari et al., 2017). The 

expected value obtained from data above the threshold are represented by a dashed blue line, while the green dots 

are represented by the extreme value distribution showing empirical distribution.  Overall, these figures show a good 

fit to the data. The confidence intervals that were obtained with the 2 methodologies from Solari et al., 2017, tends 

to be similar in Figure 20a. There is a high invariance in Figure 11b and c of the confidence intervals, as we expected 

that histogram of the threshold to be wider when the estimation of 𝑅𝑅 is automatized. This necessitates a further 

analysis to investigate it as Solari et al., 2017, mentioned.  

 

Figure 20: Histograms obtained via nonparametric bootstrapping simulations for a) Shape; b) Scale; c) Position; d) 100- 

year return levels simulations: Data are 𝐻𝐻𝐻𝐻(𝑚𝑚); e) Extreme value distribution: 100 -year return level of Data - 𝐻𝐻𝐻𝐻(𝑚𝑚).  

The results of the parameters for Solari method and the return levels are presented in Table 5. We can see that the 

return levels of 𝐻𝐻𝑠𝑠(𝑚𝑚) tends to increase from 3.113m to 3.945m from 1 to 100 years.  

Table 5: Parameter estimates and return levels 𝑯𝑯𝑯𝑯(𝒎𝒎) – Solari Method 

Parameter Value Parameter Value 

Scale (σ) -0.325 RL 30-years 3.830 

Shape (ξ) 0.672 RL 40-years 3.861 

Threshold (𝒖𝒖) 2.117 RL 50-years 3.884 

RL 1-year 3.113 RL 70-years 3.915 

RL 5-years 3.550 RL 90-years 3.936 

RL 10-years 3.678 RL 100-years 3.945 

RL 20-years 3.780   
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2.3.6. Results on Threshold selection and Return level  

The selection of an appropriate threshold in extreme value analysis is a crucial step and thus, several methods have 

been proposed in the scientific literature. In this report, the threshold selection was carried out based on the 

Graphical method, Thompson (Thompson et al., 2009), Anderson-Darlin test (Bader et al., 2018), and Solari method 

(Solari et al., 2017) in order to find the most suitable one for the given dataset. After a comprehensive evaluation, 

the Anderson-Darlin test was found to be the best suited for this dataset, as the Thompson method had a low 

threshold, while the Solari results gave a considerably higher value. The results of the Anderson-Darlin test were then 

used to obtain the optimal threshold that could provide the results for calculating the return levels for the significant 

wave heights. The results of the four methods, together with their return levels are presented in Table 6. 

Table 6:  Results on threshold selection 

 

Prior to fitting the distribution with the selected threshold (𝑅𝑅 = 1.629), the dataset was declustered to ensure that 

any trends had been removed, Figure 21.  

 

Figure 21: Declustered data with the selected threshold 

The threshold that was selected allowed us to calculate the return levels for different distributions. These 

distributions included the GPD fit, the exponential and the Point Process Approach (Section 2.4). In order to ensure 

the accurate selection of the suitable distribution for the dataset, all of these distribution results will be further 

investigated in Section 2.5. Through detailed analysis in this section, we aim to determine the best distribution that 

suits the dataset and will provide accurate results. 
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The results of the GPD fit using the estimation method MLE and the exponential distribution are provided in Table 

7, along with the empirical and model quantiles from Figure 22 and Figure 23.  In the GPD fit, both quantile plots 

show a good fit, whereas the exponential fit results are overestimated. The AIC and BIC results for the GPD fit are 

also better than the exponential fit. 

Table 7: Parameter estimates of the GPD fit and exponential distribution using the selected threshold 

Distribution Parameter Estimate Value Results 

GPD Fit 

Scale (σ) 0.860 AIC 624.385 

Shape (ξ) -0.324 BIC 633.148 

Negative log likelihood  310.192  

Exponential 

Scale (σ) 0.646 AIC 667.060 

Shape (ξ) NA BIC 671.442 

Negative log likelihood  332.530  

 

Figure 22: Result plots of the GPD fit 
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Figure 23: Result plots of the exponential distribution 

 
In the following table, we calculated the return levels for both distributions. According to this table, we can see that 

it is important to choose the best distribution since the results are quite different; for example, the RL (Return Level) 

for 50-years differs by approximately 0.4m in terms of 𝐻𝐻𝑠𝑠(𝑚𝑚). 

Table 8: Return levels of 𝑯𝑯𝑯𝑯(𝒎𝒎) with the Confidence Intervals (CI) calculated with the selected 

threshold 

Distribution  95% lower CI Estimate 95% upper CI 

GPD fit RL 25-years 3.002 3.188 3.374 

RL 50-years 3.179 3.408 3.637 

RL 100-years 3.300 3.584 3.867 

RL 200-years 3.372 3.724 4.076 

Exponential  RL 25-years 3.252 3.394 3.537 

RL 50-years 3.664 3.842 4.020 

RL 100-years 4.075 4.290 4.504 

RL 200-years 4.487 4.737 4.988 
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2.4. Point Process approach 

The point process (PP) modelling approach is considered as an elegant alternative of extreme value analysis, due to 

its capability in modelling both the intensity rates and frequency of extremes occurrence. The PP analyses extremes 

by unifying and extending the EVT based on the BM and POT approaches. With respect to the POT approach, the PP 

process is more associated with the variations in the excesses. More in detail, the PP describes occurrences in space 

or time and be used to model excesses over the threshold as occurrences in time. 

The block maxima 𝑀𝑀𝑛𝑛 = 𝑚𝑚𝑆𝑆𝑀𝑀{𝑋𝑋1,  𝑋𝑋2,𝑋𝑋3, . . . ,𝑋𝑋𝑛𝑛} should be distributed with the GEV for the normalized constants 𝑆𝑆𝑛𝑛  > 0 and 𝑏𝑏𝑛𝑛, for the occurrence of events (Yi). As described in Boano-Danquah et al., 2020, this leads to the 

sequential point process 𝑇𝑇𝑛𝑛 on 𝑅𝑅2 given by 𝑇𝑇𝑛𝑛 = �� 𝑆𝑆
(𝑇𝑇 + 1)

,
(𝑌𝑌𝑖𝑖 − 𝑏𝑏𝑛𝑛)𝑆𝑆𝑛𝑛 � ,  𝑆𝑆 = 1, … ,𝑇𝑇� 

The data are made stationary by a time-varying threshold which has a positive shift factor. The asymptotic theory 

of threshold exceedances, under suitable normalisation, shows that the exceedances over threshold are fitted to a 

non-homogeneous Poisson process. Further mathematical details on PP can be found in (Karr, 2017).  

The selection of the threshold is a compromise between the variance and the bias. On the one hand, if the threshold 

is too small, this goes against the asymptotic properties which underline the GPD deviation. On the other hand, if the 

threshold is too high, the excesses over the threshold are too small to estimate scale and shape parameters, this 

leads to high variance. This means that the selection of the threshold is crucial to understand whether the model 

provides a good approximation versus the parameter estimates’ variance (Boano-Danquah et al., 2020). 

Maximum likelihood estimation (MLE) is obtained for a GPD model, and the resulting parameter estimated are 

converted to those of an approximately equivalent PP model. For PP, three initial value estimates are calculated 

along with their associated likelihood values, Table 9.  

Table 9: Parameter estimates of the PP using the selected threshold 

Parameter Estimate Value Results 

Location (𝝁𝝁) 1.177 AIC 2381.712 

Scale (σ) 1.007 BIC 2394.858 

Shape (ξ) -0.324   

Negative log likelihood  1187.856 

Empirical and model quantiles are provided in the plots in Figure 24, along with the equivalent GEV at different return 

periods and levels. From the density plot we can observe underestimated data, although the QQ plots tends to have 

a good fit. 
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Figure 24: Result plots of the PP 

Table 10 presents the return levels for the PP distribution. The 𝐻𝐻𝐻𝐻(𝑚𝑚) look very close to the estimates for the GPD 

and Exponential fit in Table 8. 

Table 10: Return levels of 𝑯𝑯𝑯𝑯 (𝒎𝒎) with the CI calculated with the selected threshold for the PP 

 95% lower CI Estimate 95% upper CI 

RL 25-years 3.096 3.181 3.265 

RL 50-years 3.313 3.405 3.497 

RL 100-years 3.477 3.583 3.688 

RL 200-years 3.600 3.724 3.847 
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2.5. Summary results 
In the table below, Table 11, we summarise the results of the EVA for the POT against the BM methods in the case 

of historical time series (1979-2018) of significant wave heights (H_s (m)) in Marina di Massa. Note that the POT 

method considers hourly data (except for the Solari method, which considers daily maxima), whereas the BM method 

considers annual maxima. 

For each method, location-scale and shape parameters and accuracy in terms of AIC and BIC is showcased. Table 11 

gives the return level at different return times and the related confidence intervals are provided. For POT methods, 

GPD performs better in terms of goodness-of-fit (lower prediction error). Here, the selected threshold is 1.63 (see 

section 2.3.6 for details). In the case of BM, the GEV shows lower AIC and BIC values compared to Gumbel.  

As expected, in the POT method, the Weibull distribution gives the best results (light tail), which is why the 

exponential method is not appropriate for this dataset since the shape parameter is negative. The GEV distribution 

performs better in terms of negative log likelihood, AIC, and BIC compared to the PP distribution. This particular 

dataset with significant wave heights is therefore best suited to the POT/GPD distribution. 

Using the selected threshold, return level against return period have been plotted (Figure 25), along with histogram 

(Figure 26), density (Figure 27), quantile-quantile (QQ) plot of the data quantiles against the fitted model quantiles  

(Figure 28 ) and  QQ plot of quantiles from model-simulated data against the data plots (Figure 29) across all methods.  

QQ plots reveal that distributions of observations (empirical quantiles) and simulated data in the GP and PP methods 

(POT) are very similar. This is still valid for GEV in the BM method. The exponential (POT) and Gumbel (BM) show 

significant deviations at the high end of range i.e., outliers in the upper right corner. 

In regard to the histograms (Figure 26) and density plots (Figure 27), the GPD method shows good results. As for the 

GEV method, the density plot shows good results, but the histogram shows an underestimate. 

The last 2 series of plots, QQ plots (Figure 28 and Figure 29) demonstrate a skewness to the right (exponential and 

Gumbel) and left (GEV), while GPD and PP tend to show a normal distribution. On the Gumbel and GEV QQ plots, the 

data appears to be peaked in the middle, which is also evident in the histograms. Looking at the QQ2 plots for the 

GP and PP, the model for GPD appears to be better fit.  

We can conclude from these plots and results that we have achieved the best results for the POT/GPD method, and 

we should retain the return levels results for this method only. 

 

 

 

 

 

 

 

 

 



 
SCORE _D3.6_v1.0                                              36/49 

 

Table 11: Results for the POT and BM
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Figure 25: Return level calculated using the POT and BM methods 

 
Figure 26: Result plots – Histograms - for the POT and BM methods 
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Figure 27: Result plots – Density plots - for the POT and BM methods 

 
Figure 28: Result plots – QQ plots - for the POT and BM methods 



 
SCORE _D3.6_v1.0                                              39/49 

 

 

Figure 29: Result plots – QQ2 plots - for the POT and BM methods 
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3. DATA CLUSTERING 
Hydrogeomorphological disasters can be considered as stochastic point processes acting in both temporal and spatial 

dimensions (Stoyan, 2006). Point process can be analyzed in terms of their random dispersion, distribution and 

clustering. Cluster analysis is an unsupervised technique that aims to detect subgroups among the observations that, 

based on certain features characteristics, are similar to each other. In this framework, data clustering aims at 

selecting and grouping homogeneous conditions, i.e., the study of typical coastal flooding conditions and other 

hazards. Data clustering can be used in the analysis of circulation types classification. 

The partitioning clustering also known as the centroid-based method, is a type of clustering that divides the data into 

non-hierarchical groups. One of the most used unsupervised machine learning algorithms in this framework is the k-

means clustering proposed by (MacQueen, 1967). 𝑘𝑘 refers to the number of clusters centres (which corresponds to 

the mean of points assigned to the cluster) exploited to classify the data sets. The algorithm classifies objects in 

multiple groups i.e., k similar clusters of data points, so that the total intra-cluster variation (known as total within-

cluster variation) is minimized. As an example, in the case of inundation depths, inundation depths with specific 

features are identified and the data points with minimum Euclidean distance from the cluster center are identified 

as control points for each cluster (Lin et al., 2013). There are several k-means algorithms available. The standard 

algorithm defines the total within-cluster variation as the sum of squared Euclidean distances between points and 

the corresponding centroid (Hartigan & Wong, 1979): 𝑚𝑚𝑆𝑆𝑇𝑇𝑆𝑆𝑚𝑚𝑆𝑆𝑧𝑧𝑇𝑇∑ ∑ |�𝑀𝑀𝑗𝑗 − 𝜇𝜇𝑖𝑖�|𝑥𝑥𝑗𝑗𝜖𝜖𝑆𝑆𝑖𝑖𝑘𝑘𝑖𝑖=1 , 

here 𝑀𝑀𝑗𝑗  is the 𝑗𝑗𝑡𝑡ℎ data value, 𝑘𝑘 is the number of clusters and µ𝑖𝑖  is the cluster centre (mean) of data included in cluster 𝑆𝑆𝑗𝑗. 
The k-means algorithm starts with an initial group of randomly selected centroids, which are used as the beginning 

points for every cluster, and then performs iterative calculations to optimize the positions of the centroids. It stops 

optimizing clusters when either all the centroids are stabilized and there is no change in their values, or the number 

of iterations has been achieved.   

The determination of the right number of clusters is not trivial. To do this, many tests and methods have been 

introduced (Grover & Vriens, 2006). Possible approaches are the within-cluster sum of squares or visual 

representation of the data in dendrograms or scatterplots.  

The elbow method (within-sum-squares) accounts for the percentage of explained variance as a function of the 

number of clusters. At some point adding clusters will not add much information; the best 𝑘𝑘 is after the variation 

isn’t very steep, giving an angle (elbow) in the graph (Thorndike, 1953).  

The hierarchical technique avoids this problem altogether (Johnson, 1967). The hierarchical clustering technique is 

divided into agglomerative and divisive. In the agglomerative technique, which is the most used, each point is initially 

considered as an individual cluster. At each iteration, the two closest clusters are merged, and the proximity matrix 

is updated until a single cluster remains. Briefly, all data are initially considered as a single cluster and the data points 

which are not similar are separated at each iteration. 

In the following plots, significant yearly maxima of wave heights 𝐻𝐻𝑠𝑠 (𝑚𝑚) against river discharge yearly maxima 𝑄𝑄𝑚𝑚𝑎𝑎𝑥𝑥(𝑚𝑚3/𝐻𝐻) have been considered. Note that here we provide just an example of application with the available 

variables Hs_max and Q_max. This does not mean that these are the optimal combination of variables to be analyzed 

with this approach. As such, some difficulties in the interpretation of the results could arise. 
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Clustering algorithms form groupings in such a way that data within a cluster have a higher measure of similarity 

than data in different clusters. Similarity measures are distance measures including e.g., correlation, Euclidean, 

probabilistic, cosine distance. The distance is the length of the vector between the two points, called the Euclidean 

distance. The lower the distance, the closer the observations are in the cluster. The higher the similarity, the more 

similar the observations are in the cluster. To compute distance matrices, either Euclidean or correlation-based 

measures can be used. In general, it is recommended to standardize the variables before distance matrix 

computation. Standardization makes variables comparable among different scales. 

We implemented a k-means clustering which implicitly assumes Euclidean distance. In the figure below, Figure 30, 

based on the elbow method output, we selected 2 clusters and ran the algorithm 𝑇𝑇 times with random initialized 

centroids. By minimizing the model’s quality measurements, the best solution should be reached. This measurement 

is the total within-cluster sum of squares (WCSS). 

To perform cluster analysis, the factoextraR (Alboukadel Kassambara, 2017) and cluster (Martin Maechler, 2022) R 

packages have been used. 

 

Figure 30: Elbow method – numbers of clusters and within-cluster sum of squares (WCSS) 

In the resulting plot, data observations are represented by points, using the features, if the number of variables is 

greater than 2. A concentration ellipse is drawn around each cluster. In Figure 31, the first two   features are Hs_max 

(dim1, on the x-axis) and Q_max (dim2, on the y-axis). To find the mean of the variables in each cluster, the aggregate 

function (Becker et al., 1988). We can also exploit parallel coordinates to understand what clusters represent by 

looking at how the variables compare across the clusters. Based on Figure 31 two groupings can be identified: 

• Blue sample (cluster 1), with widespread (low to high) Hs_max and Q_max; 

• Red sample (cluster 2), with low Hs_max and low Q_max; 
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Figure 31: Cluster plot 

The two components capture around 39% and 33% of the total variance. The hierarchical clustering (also known as 

clustering of clustering) starts with a distance matrix (in this case, the Euclidean distance has been adopted as the 

default method). The default output is a dendrogram. The dendrogram is a tree-like structure with data points on 

the x-axis, while the cluster distance lies on the y-axis. Going down in a path, the clusters become smaller and smaller 

until the level reaches the data sample. In the hierarchical clustering, no assumption on the number of clusters is 

made. Slicing the structure horizontally, all the branches below that line are an individual cluster at the highest level. 

This means that, once created the clusters, the relationship between the subsequent subclusters that can be formed 

is still known and the level of granularity of clustering can be increased or decreased. At every branching, all the data 

having the membership at each level belongs to a certain class. To infer the class entity, it is necessary to go through 

few individual samples of each level in the cluster to find out what feature is common in the resulting cluster. To 

understand and visualize graphically how the dendrogram will be cut into clusters, the number of clusters should be 

specified. This dendrogram, Figure 32, was realized using a partition of 2 clusters. The first cluster (far left) is 

composed of 9 observations. The second cluster to the right has 31 data. Cutting the dendrogram higher, we would 

have fewer final clusters but with a lower similarity. 
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Figure 32: Cluster Dendrogram 

There is no incorrect or correct number of clusters. The clustering outcome can be measured based on compactness 

(how much observations in each cluster are similar to each other) and closeness (i.e., how much observation in a 

cluster are closer to each other than they are to other data in other clusters).   

To validate clusters, we can exploit the silhouette (Si) analysis, which is aimed to calculate the similarity of each 

observation to the assigned cluster (Rousseeuw, 1987). The silhouette width is defined as follows: 

(𝑏𝑏 − 𝑆𝑆)

max(𝑆𝑆, 𝑏𝑏)
 

where 𝑆𝑆 is the average dissimilarity or intra-custer distance (i.e., an average measure of how much the data samples 

are distinct, opposite of the similarity) between the 𝑆𝑆𝑡𝑡ℎ  point 𝑀𝑀 and the other points in the cluster to which  𝑀𝑀𝑖𝑖  
belongs to. The average distance between all cluster (inter-cluster distance) is denoted by 𝑏𝑏. 

The metric (i.e., the silhouette width) ranges from –1 to 1 for each observation and can be interpreted as follows: 

• Observations with a negative 𝑆𝑆(𝑆𝑆) are probably assigned to the wrong cluster; 

• A small 𝑆𝑆(𝑆𝑆) (around 0) is indicative of the fact that the observation lies between two clusters; 

• Observations with a large silhouette 𝑆𝑆(𝑆𝑆) (almost 1) should be very well matched to the assigned cluster. 
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Data in Figure 33 are ordered within each cluster from the highest to the lowest 𝑆𝑆(𝑆𝑆). As can be seen, our two 

clusters solution returns an average silhouette coefficient of 0.31. One of the objects in cluster 1 has a slightly 

negative silhouette coefficient indicating it may be in the wrong cluster (observation 33).  

 

Figure 33: Clusters silhouette plot 

 

In the k-means algorithm the clustering provides an initial separation of relevant data into Hs_max -Q_max groups. 

The hierarchical clustering explains the relationship between data in the groups. This approach can be repeated with 

a different number of clusters to see if any improvement in the silhouette coefficient occurs (i.e., higher coefficient). 
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4.  ANALYSIS OF WEATHER CIRCULATION 
TYPES  

The objective of this activity is to analyse Circulation Types Classifications (CTCs) and the associated conditions for 

severe weather and related events, such as floods, storms and waves. 

Atmospheric circulation refers to the large-scale movement of air within the atmosphere. By this, moisture and 

thermal energy are redistributed across Earth, as it moves from high pressure (anticyclones) areas to low pressure 

(depressions). It is responsible for daily changes in the weather. The persistence or recurrence of such weather 

patterns during seasons or months is crucial in the definition of anomalies in climate variables (ESOTC, 2022).  

Weather or circulation type classifications (WTCs or CTCs) are widely used to analyze weather and climate conditions 

as a tool to separate the state of the atmosphere into subsets with similar and recurrent characteristics. Weather 

types are related to atmospheric characteristics closer to weather conditions such as instability and vorticity, while 

the so-called Circulation Types are directly linked to strictly circulation variables such as geopotential height and 

pressure.  

Weather or circulation type classifications are also used to study the frequency and persistence of circulation types 

under various climate scenarios and assess the risk of severe weather in the coming decades. 

During the 2000 to 2010 period, the relation between circulation weather types and extreme event have been 

increasingly explored (e.g., floods, Prudhomme & Genevier, 2011), owing to the impact of weather circulations on 

climate and particularly on storms.  

Classifications of weather circulation have a long history in meteorology and climatology, starting with manual 

classifications (Hess & Brezowsky, 1952; Lamb H, 1972). In the last decades, the improvement of computing 

resources has fostered the development of fast and objective methods that used gridded datasets (e.g., of mean sea 

level pressure - MSLP or of geopotential height at 500 hectoPascal (500hgt)) to group the data into a small number 

of distinct categories. 

In this context, the European project “Harmonization and Applications of Weather Types Classifications for European 

Regions” – COST Action733  (Fernández-Montes et al., 2014; Huth, 2010; Huth et al., 2008; Philipp et al., 2010) made 

an important contribution by providing a software code for classification of atmospheric circulation with different 

clustering methods. The choice of the best classification depends on several factors, such as the variable used for 

the classification (e.g., MSLP or 500hgt), the meteorological or environmental variable to be analyzed (e.g., 

temperature, precipitation, waves), the number of classes or clusters and the domain size. 

LaMMA Consortium gained a considerable experience with this software, specifically about the choice of the most 

suitable classifications for describing the variability of surface temperature and precipitation in Italy (Iannuccilli et al., 

2021; Vallorani et al., 2018). This experience, together with another preliminary study carried out on sea wave height 

data along the north Tyrrhenian and Ligurian sea, is very helpful in the identification of the most suitable 

classifications, in particular for the Italian domain, in order to evaluate the risk of severe weather or related 

phenomena (e.g., floods, storms, waves) by 2100, induced by changes in frequency and/or internal characteristics of 

circulation types, computed on the projections of several Regional Climate Models (RCMs) from the EURO-CORDEX 

dataset.   
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The methodology we have identified is being developed for the Italian peninsula, and exportable to other domains 

of equivalent size over Europe, to cover the target regions of the SCORE project. It is the result of previous analyses 

that allow to identify optimal classification solutions, among the (theoretically) several different possible ones. From 

previous research along the Italian peninsula, PCT09 (Principal Component analysis in Transversal-mode) and SAN09 

(Simulated ANnealing), computed on mean sea level pressure (MSLP) were identified to be the best performing 

classifications on daily precipitation and maximum sea wave height respectively. They are both calibrated on ERA5 

reanalysis datasets of MSLP over the reference period 1979 – 2005, using COST733 software package 1.4. The two 

CTCs are both made of 9 classes and were respectively computed with an obliquely rotated in PCT and with a k-

means clustering SAN. Meteorological patterns of each Circulation Type (CT) are evaluated through monthly 

composite maps of rainfall amount, mean wind speed and temperature for the domain (in this case Italy) computed 

on the E-OBS regular grid dataset (0.1-degree spatial resolution) available on Copernicus C3S (Cornes et al., 2018) 

website (https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php). A punctuality analysis can also be 

carried out on long time series of observed data from weather stations.    

  

 
 

Figure 34: The two Circulation Type Classifications (CTCs) calibrated on ERA5 Mean Sea Level Pressure (MSLP) between the 

reference period 1979 – 2005; PCT09 is the CTC computed with Principal Component analysis in Transversal mode method 

(left panel) and SAN09 the CTC computed with k-means clustering Simulated ANnealing method (right panel). 

A crucial part of the RCMs analysis is the comparison between the two calibrated CTCs on ERA5 and the assigned 

types for historical EURO CORDEX EUR-11 model (CNRM-CM5-ALADIN53 and multiple RCMs) on the reference period 

1979-2005 in terms of frequency and persistence of circulation types, following the methodology described in the 

scientific report n.91 of MeteoSwiss entitled “Climate Change and Circulation Types on the Alpine Region” (Rohrer 

et al., 2017). This activity attempts to give an estimate of the quality of the EURO-CORDEX RCMs concerning their 

ability to simulate historic climate pattern through the frequency of the circulation types.  

Afterwards, projections of MSLP field for a single (CNRM-CM5-ALADIN53) or multiple RCMs EURO CORDEX EUR-11 

models will be converted, through an assignment algorithm of the COST733 software, into projected circulation types 

up to year 2100, according to SSP2-4.5 and SSP5-8.5 IPCC scenarios.  This activity will allow us to show the pattern 

variations through the variation of the frequency of the types of circulation. 

Finally, it will be possible to carry out a trend analysis of circulation type frequency and within-type changes, with a 

multiple scenario and a multi-model ensemble approach on a seasonal or monthly basis, in order to evaluate changes 

in the risk of extreme/severe weather events on a local scale.    

 

https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php
https://www.meteoswiss.admin.ch/dam/jcr:e22f4ed3-df71-43c5-b385-9dc62110edde/sr91rohrer.pdf
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